
PROTOTYPING
MOVEMENT
with C++ and Arduino

MATTERLAB 2020 - RACHAEL SHIELDS

Kinetics 01
Matterlab Project 02
Prototype 1 04

Overview
Components
Analysis
Summary

Prototype 2 11
Overview
Components
App
Summary

Arduino 22
Schematics 24
Prototype 1 Code 32
Prototype 2 Code 35
Conclusion 42

TABLE OF
CONTENTS

KINETICS

01

kinetics is finding ways to continually
move the built environment ”“

landscape architecture

architecture furniture

bridges

 Kinetics in the built environment is movement that can range from adjustable seating,
to movable trees, to an urban plaza that robotically transforms shape based on need. Currently,
kinetics tends to stay within the realm of moving sculptures or stadium roofs, but the future
holds an abundance of opportunities for kinetics in the landscape. I argue the built environment
should have the flexibility to adapt to change, whether that is a changing society, environment,
or user type without the need for continual demolition. Serious global problems like urban space
constraints, stormwater management, and energy production might find their solutions with kinetic
environments. Furthermore, kinetics can provide a powerful new addition to participatory design,
putting design into the hands of the user with the ability to customize a kinetic environment to their
particular needs or desires. The inspiring possibilities are seemingly endless.

MATTERLAB
INTRO TO THE PROJECT

02

WHY PROTOTYPE MOVEMENT?
Motion adds a more complicated dimension to design. A 3D model is not enough to design moving
parts.

Digital models make it difficult to take into account environmental or user inputs. Arduino offers
this.

Animated digital models lack realistic movement, materials, and fabrication methods needed to
accurately engineer such ideas.

Errors can be minimized before it becomes a financial or safety concern.

Prototyping is key to test out parameters like speed, actuator type, or any sensors involved.

A physical prototype strengthens the validity of complex, seemingly science fiction concepts like
a kinetic environment for the client/user.

The act of prototyping can be used as a method of design.

Prototyping puts design into the landscape architect’s hands instead of a mechanical engineer’s.

RESEARCH OBJECTIVES
create prototype iterations of kinetic topography.
create a guide to replicate the prototypes with the dual purpose of teaching how they work.

1

2

1.
2.
3.
4.
5.
6.
7.
8.

03

WHAT WILL IT LOOK LIKE?

HOW DO WE PROTOTYPE MOVEMENT?
as a solution, I propose using Arduino and C++ code to program a movable and adjustable prototype. In
essence, Arduino is a mini-computer that takes the hardware wired to it and C++ code to do a task. In this
case the tasks will be moving servo motors, reading a water level sensor, and reading signals via bluetooth.

void readWaterSensor() {
 digitalWrite(WATER_SENSOR_POWER_PIN, HIGH);
 delay(10);
 water_level_raw = analogRead(WATER_SENSOR_DATA_PIN);
 digitalWrite(WATER_SENSOR_POWER_PIN, LOW);
}

+

C++ CODE ARDUINO

the goal is to create a malleable
surface like this that can handle
significant grade changes and
hold the weight of a crowd of
people.

OVERVIEW
PROTOTYPE 1

VISION
imagine this as a water-front plaza. maybe
during a normal day it has a few blocks up
for casual seating while viewing the coast.
maybe during an event, a stage is created
and tiered seating is pushed up. and maybe
during a storm the blocks automatically
react and rise up to create a flood barrier.

04

VIDEO LINK: https://youtu.be/daMVpNQ7z8o

FINAL PROTOTYPE

the process started with some hand sketches and
progressed to 3D modeling. physical prototyping
started with several small cardboard models, this
styrofoam model, and then the final wood version.

PROCESS

45º ROTATION

the servos are lined up in a grid under the
wood blocks. they are numbered to help with
setting up the code and wiring

a water level sensor is inserted in water which causes 25 servo
motors to rotate and lift up 25 wood blocks to different height

HOW IT WORKS

the size of the motors directly created
the size of the prototype. they couldn’t be
placed closer together and so smaller blocks
couldn’t easily be used in this configuration

05

FINAL PROTOTYPE

COMPONENTS

A

* arduino layout explained in detail in schematic section of booklet

other sensors like a motion sensor could be attached,
but a water level sensor was chosen to show how

landscapes could react to climate change.

WOOD BLOCKSA

B JUMPER WIRES

C ARDUINO POWER

D ARDUINO

E

F

G

H

I 3D PRINTED ARM EXTENSIONS

BREADBOARD

WATER LEVEL SENSOR

WOOD FRAME WITH LEGS

SERVO MOTORS

J WOOD SERVO SUPPORTS

B

C
D

E

F

06

servo motors were used over other
options like a linear actuator due to

their small scale and affordability

wood servo supports
are need due to the
screw hole placement

a breadboard allows us to quickly
connect and remove all the wires to
the arduino without soldering.

G

H

E

I

H

J

arm extensions increased range of
motion from 1/8” to 1/2”

07

to pair with the water level
sensor I chose the stair stepping
configuration. however, many
others can be programmed. the 5 x
5 grid is the limiting factor here.

CONFIGURATIONS

08

STEPS

X

SLOPE

MOUNTAIN

INVERTED MOUNTAIN
SERIES

1.
PROBLEMS

the wood blocks did not move perfectly straight up and
down. you can see the blocks not laying flat or going down
smoothly.

WHY:
• i thought purchasing pre-cut blocks would help

solve this. however, the blocks i purchased were not
perfectly sanded so when I sanded them to reduce
friction they were then not exactly square.

• the servo arms were not aligned precisely to center.

SOLUTIONS

current: a piece of code was added so that after
each configuration the arms would shake the blocks
to help get them back down into place.

future: if i were to do another iteration i would put
the blocks on rods to help with straight up and down
movement. or try an iteration where the arms are
attached to the blocks.

future: i would laser cut more pieces to help with
precision.

2. the blocks only moved 1/2”

WHY:
• small servo motors were chosen because of their

affordability and that they would reduce the overall
size of the model. however, this came at the cost of a
small amount of movement.

current: extension arms were added to get the
1/2”. you can see in the process image that i
started without the arms and that only got 1/8” of
movement.

future: use a different method of movement. the
better method would have been to use linear
actuators (piston arms that move straight up and
down). however, the project would have cost up to
15x more due also to the size increase.

3. the resolution of the configurations is poor

WHY:
• in order to cut down on cost and make something that

could be finished within the Matterlab timeframe it
was important that the model be fairly small. the size
of the motors and arms directly dictated the size of the
blocks. the amount of servos/blocks was chosen out
of concern for additional power requirements.

4. it is pre-loaded configurations without user interaction.

WHY:
• user interaction adds an additional level of complexity.

it was important to get to this level of prototype first
before adding in anything else.

ANALYSIS

09

current: i deemed it more important to show the
concept rather than invest extra resources and time.
however, additional power could be added and the
grid could be extended on this same concept.

future: change the way that the arms function and
interact with the blocks. consider moving the servos
to the side and having long arms.

current: it doesn’t have user interaction, but it has
environmental interaction.

future: the sensor could easily be switched out to
something like a motion sensor for user interaction,

SUMMARY

this prototype took three months to build due to learning how to code and work with arduino. so there
is indeed a large learning curve. i heavily underestimated the time it would take to complete the first
prototype and that didn’t leave much time for prototype 2. however, i was pretty proud of getting this far.
it has always been important to me to find ways to use kinetics to provide more benefit than just a play
surface. mostly because in order to sell people on an expensive concept like a moving landscape you need
as many benefits as you can get. i didn’t go into making this model with the intention of creating a space
to adjust to flooding, it was a happy accident.

the original concept was to have a grid of pistons moving up and down with a flexible surface over top. that
idea was quickly squashed when I realized the cost involved and the intensity of the engineering required. i
needed something simpler to start with and so the idea for the wood blocks was born.

precision turned out to be extremely important to this prototype . it is small scale and imperfections easily
multiplied. the servo motor really dictated the model and it was built around trying to work with its faults.
several servos also died during the process. if I were to redo the block method model I would CNC or laser
cut as much as possible and use a different method of movement.

• precision - nothing should be cut
by hand if possible.

• provide user interaction
• try continuous topo
• add more servos to increase the

resolution
• scale up the model

TAKEAWAYS FOR
PROTOTYPE 2

*this prototype was disassembled to
reuse the materials for prototype 2*

10

OVERVIEW
PROTOTYPE 2

VIDEO LINK: https://youtu.be/6nVXO4o4Iwk

FINAL PROTOTYPE

materials were recycled from the first prototype which created a process where a lot less sketching and 3D
modeling was done in exchange for hands on tinkering.

PROCESS

VISION
imagine this as a active play surface. a
park that is modifiable to desires. a new
form of interactive play/exercise. imagine
this as a one-hole golf course with infinite
configurations. or maybe futuristically a
way to blend architecture and landscape
architecture into one adjustable surface.

11

modifiable topographic surface

HOW IT WORKS
lesson learned from prototype 1 is that the

servo arms didn’t move the blocks enough. an
alternative solution to the arm extensions is

to attach a wheel. with a large circumference
we can get a lot more movement.

when the servo arm and wheel attachment
move to the left the surface gets pulled down
(shown in diagram) and when they move to
the right the surface gets pulled up.

the membrane is operated
with an app that has preset

configurations or individual servo
control.

12

COMPONENTS

2’ x 2’ WOOD BASE AND TOPA

B BOLTS AND L BRACKETS

C 6” AND 5” WOOD LEGS

D STRETCHABLE FABRIC STAPLED TO WOODEN FRAME

A

A

B

C

B

D

bolts and L brackets were a solution to
having to attach the wood legs to fabric. this
allowed the fabric to stretch and also did not

create any cuts that would later rip.

the wood base and top both have 36 holes drilled in them to screw in the wood blocks and attach cotter
pins. these were hand grided out and drilled with a drill press. precision for this was less important, but I
should have laser cut the holes instead.

13

LASER CUT 4” CARDBOARD CIRCLESE

F EARRING RODS

G EARRING BACKS

H SPACER BEAD

each wheel attachments comprised of 6
earring rods and backs to clamp the two

cardboard circles together. there is a spacer
bead in between where the elastic will run

around the perimeter. there are also two
earring rods and backs to clamp on the servo

in the middle.

14

arduino wiring schematics
are shown in detail on pages
26-31. the power supply had
to be introduced to go from
25 servos to 36. the bluetooth
module allows the app to
control the membrane.

M

O

N

P

Q

R

H
G

F

E

ELASTIC STRINGI

J COTTER PINS

K WOOD BLOCKS

L SERVOS

M

N

O

P

Q ARDUINO BOARD

JUMPER WIRES

BREADBOARD

BLUETOOTH MODULE

POWER SUPPLY WIRES

R POWER SUPPLY

the circles were laser cut due to
the lesson learned in prototype 1

about precision.

K

LM

I

J

K

L

FG

the earring rods and backs and sewn into the
fabric. elastic string is then looped around
the cardboard circles and the up to the cotter
pins. in a real landscape the pulley system
can be covered and be a design element.

16

SLANT

VALLEY

MOUND

DITCH

RANDOM

VALLEY

CONFIGURATIONS
these are the preset configurations.
the wave is a multi-step configuration.
more moving configurations like the
wave should be explored. I see potential
with flood control using a moving wave
configuration that reduces incoming
wave force.

17
WAVE

SLANT

MOUND

RANDOM

THE APP

18

MIT App Inventor was used to create the membrane app. it was the easiest and quickest way i could find.
the technology isn’t great since it’s from around 2006, but it got the job done.

there are two ways to use the app. the preset configurations are a quick way to get a design in place. the
fine control portion allows each servo to be controlled individually. you select the servo number and can
push the plus or minus buttons to move the surface up or down.

summary:
block 1: gets all of the available bluetooth connections and adds them to the list you can pick from.
block 2: establishes the connection between the bluetooth signal and the phone.
block 3: handles bluetooth disconnection.

summary:
block set 1: when you click on each configuration it sends the corresponding
number through the bluetooth to the arduino
block 2: the spinner is the drop down menu. when you select a servo to
modify it sends that selection to the arduino.
block 3: when you click the down button it sends the 200 code to the
arduino. to move the selected servo down.
block 4: when you click the up button it sends the 201 code to the arduino.
to move the selected servo up.

19

how the app can also work with prototype 1

20

SUMMARY

• laser cutter was used for more precision
over 3D printing and hand work.

• more range of movement was introduced.
• the model is overall more cleanly built.
• the model is scaled up to a larger size
• more servos were included for better

resolution.
• user interaction was added.
• the continuous topo method was included

IMPROVEMENTS FROM
PROTOTYPE 1

prototype 2 was directly created from the in depth analysis of prototype 1. I tried to take the issues with
prototype 1 and solve them with the second. for example, the range of motion was small in prototype 1 so
the entire purpose of using the wheel attachments in prototype 2 is to get about a 4” range of movement.

the part I am most happy with on prototype 2 is being able to use an app to modify it. I think people can
more easily understand the possibilities with the surface because they can relate to how apps work. I am
also happy with the size of the model and that is overall more cleanly built than prototype 1. on this note
though, the use of the earring rods and backs is probably the worst part about the project. they seemed to
hold tight when static, but when enough force is applied they don’t perform well. bending the rods back on
each circle was also a poor decision because the backs don’t work well with bent rods. the securing of the
servo arms with the earrings rods and backs is loose and this is visible with crooked circles. the earring
rods and backs were used because something needed to piece cardboard and fit through the servo arm
holes. the wheels needed to be cardboard because they needed to be lightweight. next time an entirely
different connector should be used. using the elastic thread and non-securely held together wheels
creates a fairly delicate prototype. it is much more fragile than prototype 1 was.

the most challenging part of making prototype 2 was figuring out how to power it. I didn’t know increasing
from 25 servos to 36 would require extra power otherwise I wouldn’t have done it. however, during the
making of prototype 1 I went down a month-long rabbit hole of learning how to add additional power
because I thought it would need it. turned out prototype 1 didn’t need extra power, but that knowledge
and hardware came in handy when it was Thursday, the day before the project deadline and the surface
wasn’t cooperating. actually, the surface went rogue and was doing it’s own version of the configurations
because of the lack of power. hilariously it is probably the exact nightmare people have about this type of
technology. I admit it was slightly frightening in the moment when I didn’t know what was happening.

ARDUINO
digital numbered pins - these are for
input wires. there are 53 digital pins on
this board. we will be using 25 or 36 of
these for the servos and 1 for controlling
the water level sensor power.

connection to wall outlet

anywhere on the board that says 5V or
3V3 is where we can connect power
wires. this board has 4 pins. 3V3 = 3.3
volts.

connection to computer

ARDUINO BOARD

anywhere on the board that says GND is
where we can connect the ground wires.
this board has 5 pins.

analog numbered pins - these are for
input wires. there are 15 analog pins on
this board. we will be using 1 to provide
input to the water level sensor.

arduino: an open-source hardware and software
company. arduino makes several different
microcontrollers. a microcontroller is essentially
a mini-computer that allows us to control the
prototype. shown here is the Arduino Mega, but in
the physical prototype I use an off-brand board.

TX and RX pins are for receiving and
transmitting data.

22

male

female

BREADBOARD
ground

power

JUMPER WIRES

in the schematic diagrams on the following pages
servos are shown connected directly to the breadboard
but I added additional male to male jumper wires as
extension cords in the physical prototype.

jumper wires connect everything
to the breadboard and the bread
board to the arduino.

a breadboard acts like a power strip does. it
allows us to plug more into the arduino board.

columns

• all of the in holes in each column are connected, but not across
the middle divider. this board has 2 sets of 63 columns. all of the
holes in the power row are connected and all of the holes in the
ground row are connected.

• the breadboard is split across the middle. one side does not
connect to the other without additional components not used in
this prototype.

ground (-)
power (+)

23

SCHEMATICS
connect each servo wire to the breadboard and
then connect those breadboard slots to the
arduino.

STEP 1: CONNECTING A SERVO MOTOR

ground
power
signal (sends c++ code)

plug power into 5V pin

plug signal into a numbered
pin. i started with number
22 for prototype 1. you can
see what it looks like in the
code below.

plug ground into a ground pin

the servo has three wires coming out the side

the yellow wires must be placed
in the same column

#define FIRST_SERVO_PIN 22

24

#define FIRST_SERVO_PIN 22

we only need one ground and power connection to the
arduino per breadboard. however, each servo still needs
a signal connection to the arduino. i divided the total
amount of servos among three breadboards. so keep
adding servos until you get there.

STEP 2: CONNECTING MORE SERVO MOTORS

plug the 2nd signal wire into
the next numbered pin. in
this case it is pin 23, which
isn’t numbered on this
board.

25

to add a second breadboard we need to add another
ground and power connection to the arduino.

STEP 3: CONNECTING MORE BREADBOARDS

26

after placing 25 servos and 3 breadboards we can add the water level sensor. it also has power,
ground, and signal wires, but they don’t come with the sensor. so male to female jumper wires are
used to connect the sensor to the breadboard.

PROTOTYPE 1: CONNECTING THE WATER LEVEL SENSOR

digital pins: only have two values (HIGH and LOW). the water level sensor
power is plugged into a digital pin because we don’t want it to have constant
power. plugging it into a 5V pin would leave it constantly powered but
plugging it into a digital pin allows us to turn the power on and off when
needed because we can send 5V to it with the code.

analog pins: can take on any number of values. the water level sensor needs
to have its signal wire attached to an analog pin because it provides a range
of depth levels.

ground is plugged in the
same way as the servos

power is plugged into a digital
pin to be controlled in the code.
which means the wires on the
breadboard need to line up in a
row like the input wires

signal is plugged into an analog pin
because it provides a range of depth levels.

ground
power
signal (sends water level depth)

3 male to female
jumper wires

27

4 male to female jumper wires will be used to connect the bluetooth module. ground gets plugged in
like usual. power (VCC on the bluetooth module) gets plugged into the 3V3 pin this time. TXD stands
for transmit and RXD stands for receive. transmit on the bluetooth module needs to connect to a
receive pin on the arduino and receive needs to connect to the transmit on the arduino. this is to send
and receive via bluetooth.

PROTOTYPE 2: CONNECTING THE BLUETOOTH MODULE

ground
power
signal (transmits)
signal (receives)

28

36 servos need a lot of power to operate so an additional power supply was required. the power supply gets
plugged into the wall. ground and power from the power supply connects to each breadboard. and a ground
from each breadboard connects to the arduino if this hasn’t already been done in another step. connecting
the grounds is the most important step. the power supply has enough current to kill you.

PROTOTYPE 2: CONNECTING THE POWER SUPPLY

ground
power

plugs into wall

POWER SUPPLY

#include <Servo.h>

[1] - includes

summary: the first line of code is telling the program to use functions included in the Arduino Servo Library. this includes all
the functions like .write or .attached that we will need to control the servo motors.

#define WATER_SENSOR_POWER_PIN 9
#define WATER_SENSOR_DATA_PIN A0

#define DIM_X 5
#define DIM_Y 5

const unsigned short TOTAL_SERVOS_ATTACHED = DIM_X * DIM_Y;

#define FIRST_SERVO_PIN 22

#define ROT_INIT 0

#define ROT_DELTA 45

#define WATER_LEVEL_THRESHOLD 25

[2] - constants
summary: constant values (const) and
definitions (#define) don’t change. once they
are defined here they are set permanently and
the compiler or arduino cannot change them.
for example, the 5x5 wood block grid does not
change.

the first two lines indicate which pins on the
arduino the water level sensor is plugged into.
digital pin 9 for its power and analog pin A0 for
its signal.

the next three lines defines the servo grid and
gives us the total number of servos attached
(5x5 =25).

we then define that we are plugging in servo 0
to pin 22 on the arduino, servo 1 will go in pin
23, servo 2 in pin 24, etc.

next we define the initial rotation which is
the starting point for all of the servo arms.
delta refers to the change in movement. here
meaning the servo arm can move 45 degrees.

lastly we define that at a read out of 25 on the
water level sensor, movement is triggered.

30

CODE
PROTOTYPE 1i broke the code down into 8 sections. there is a summary

with each section to help explain what is happening.

31

const float CONFIG_NULL[TOTAL_SERVOS_ATTACHED] = {
 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0
};

const float CONFIG_MAX[TOTAL_SERVOS_ATTACHED] = {
 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0
};

const float CONFIG_SHAKE[TOTAL_SERVOS_ATTACHED] = {
 0.1, 0.1, 0.1, 0.1, 0.1,
 0.1, 0.1, 0.1, 0.1, 0.1,
 0.1, 0.1, 0.1, 0.1, 0.1,
 0.1, 0.1, 0.1, 0.1, 0.1,
 0.1, 0.1, 0.1, 0.1, 0.1
};

const float CONFIG_MOUNTAIN[TOTAL_SERVOS_ATTACHED] = {
 1.0, 0.8, 0.6, 0.4, 0.2,
 0.8, 0.7, 0.5, 0.3, 0.1,
 0.6, 0.5, 0.4, 0.3, 0.1,
 0.4, 0.3, 0.3, 0.2, 0.0,
 0.2, 0.1, 0.1, 0.0, 0.0
};

const float CONFIG_DIAMOND[TOTAL_SERVOS_ATTACHED] = {
 0.0, 0.0, 0.3, 0.0, 0.0,
 0.0, 0.3, 0.6, 0.3, 0.0,
 0.3, 0.6, 1.0, 0.6, 0.3,
 0.0, 0.3, 0.6, 0.3, 0.0,
 0.0, 0.0, 0.3, 0.0, 0.0
};

const float CONFIG_STEPS[TOTAL_SERVOS_ATTACHED] = {
 1.0, 1.0, 1.0, 1.0, 1.0,
 0.7, 0.7, 0.7, 0.7, 0.7,
 0.5, 0.5, 0.5, 0.5, 0.5,
 0.2, 0.2, 0.2, 0.2, 0.2,
 0.0, 0.0, 0.0, 0.0, 0.0
};

[3] - configurations
summary: these are the different height
configurations of the wood blocks. there are 25
numbers, one for each servo. the numbers are
shown as parts of the max rotation of the servo
arms. for example, 0.1 = 10% of the 45 degree
rotation, 1.0 = 100% of the 45 degree rotation.

the grid setup of the servos runs left to right like
this:

 00--01--02--03--04
 05--06--07--08--09
 10--11--12--13--14
 15--16--17--18--19
 20--21--22--23--24

the first configuration shows that all blocks are flat.

the second configuration shows all the blocks at
max height.

the third configuration works in a series to help
shake the blocks down into place. this was added
after realizing the blocks were not moving up and
down perfectly.

the fourth configuration slopes down from the top
left corner.

the fifth configuration creates a diamond effect.

the last configuration on this page looks like stairs
and is what will be used when the water level
sensor is triggered.

32

const float CONFIG_INVERT_MOUNTAIN_1[TOTAL_SERVOS_ATTACHED] = {
 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 0.0, 0.0, 0.0, 1.0,
 1.0, 0.0, 0.0, 0.0, 1.0,
 1.0, 0.0, 0.0, 0.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0
};

const float CONFIG_INVERT_MOUNTAIN_2[TOTAL_SERVOS_ATTACHED] = {
 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 0.0, 0.0, 0.0, 1.0,
 1.0, 0.0, 1.0, 0.0, 1.0,
 1.0, 0.0, 0.0, 0.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0
};

const float CONFIG_INVERT_MOUNTAIN_3[TOTAL_SERVOS_ATTACHED] = {
 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 0.5, 0.5, 0.5, 1.0,
 1.0, 0.5, 0.0, 0.5, 1.0,
 1.0, 0.5, 0.5, 0.5, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0
};

const float CONFIG_X[TOTAL_SERVOS_ATTACHED] = {
 1.0, 0.0, 0.0, 0.0, 1.0,
 0.0, 1.0, 0.0, 1.0, 0.0,
 0.0, 0.0, 1.0, 0.0, 0.0,
 0.0, 1.0, 0.0, 1.0, 0.0,
 1.0, 0.0, 0.0, 0.0, 1.0
};

[3] - configurations (continued)

int water_level_raw = 0;

Servo servos[TOTAL_SERVOS_ATTACHED];

[4] - variables
summary:

the first variable is named water level raw. here we are creating a
variable that will be referenced and changed to a value once the
sensor is dipped in water. the second line of code means we are
creating an array. the length of the array is the number of servos
attached which is 25. an array makes it so we don’t have to have 25
lines of code to change all of the servos.

summary:
the first three configurations work
together in a series to create an inverted
mountain.

the fourth configuration is set up in an x
formation.

33

void InitServos()
{

 for (int i = 0; i < TOTAL_SERVOS_ATTACHED; i++)
 {
 servos[i].attach(i + FIRST_SERVO_PIN);
 servos[i].write(ROT_INIT);
 }
 }

void InitSensors()
{
 pinMode(WATER_SENSOR_POWER_PIN, OUTPUT);
 digitalWrite(WATER_SENSOR_POWER_PIN, LOW);
}

[5] - initial functions
summary:
initial functions only run once at the beginning setup.

the first function will loop through all 25 servos, attaching
them in consecutive order based on the first pin being 22
(which we defined in section 2 of the code). it will then set the
arms to 0.

InitSensors is a function that sets up the arduino to power the
water level sensor.

void SetToConfig(const float * new_config)
{
 for (int i = 0; i < TOTAL_SERVOS_ATTACHED; i++)
 {
 unsigned short new_angle = ROT_INIT + (floor(new_config[i] * ROT_DELTA));
 servos[i].write(new_angle);
 delay(100);
 }
 }

void ShakeServos()
{
 SetToConfig(CONFIG_NULL);
 SetToConfig(CONFIG_SHAKE);
 SetToConfig(CONFIG_NULL);
}

void readWaterSensor() {
 digitalWrite(WATER_SENSOR_POWER_PIN, HIGH);
 delay(10);
 water_level_raw = analogRead(WATER_SENSOR_DATA_PIN);
 digitalWrite(WATER_SENSOR_POWER_PIN, LOW);
}

[6] - runtime functions
summary:
runtime functions will continually
run throughout the process.

the first function is for setting the
servos to the configurations. it will
loop through 25 times because
it is a for loop which runs a set
number of times. it takes the
starting position of the servo arm
and calculates the rotation defined
in the configuration. floor just
means it rounds the number down
to whole number. then it sets each
actuator to the new angle. a delay
is added between rotating each
servo to help with power concerns.
the delay is in milliseconds. 100 =
1/10 of a second.

next we create the configuration
series to shake the servos. it
makes all the blocks flat, all to 0.1,
and then all flat again.

the last section turns on the water
sensor, reads and saves the data,
turns off the sensor, and then
sends the reading back.

34

void setup() {
 Serial.begin(9600);
 InitSensros();
 InitServos();
 }

[7] - arduino setup
summary:

serial.begin starts up the arduino. it then runs the initial functions in section 5

void loop() {
 readWaterSensor();

 if (water_level_raw > WATER_LEVEL_THRESHOLD)
 {
 SetToConfig(CONFIG_STEPS);
 ShakeServos();
 }
 else
 {
 SetToConfig(CONFIG_X);
 delay(2000);
 ShakeServos();
 SetToConfig(CONFIG_INVERT_MOUNTAIN_1);
 delay(2000);
 ShakeServos();
 SetToConfig(CONFIG_INVERT_MOUNTAIN_2);
 delay(2000);
 ShakeServos();
 SetToConfig(CONFIG_INVERT_MOUNTAIN_3);
 delay(2000);
 ShakeServos();
 SetToConfig(CONFIG_STEPS);
 delay(2000);
 ShakeServos();
 }
}

[8] - arduino loop
summary:
this loop will keep running the entire time arduino is running.

first it checks the water level sensor. if the level is greater than
the defined threshold then the stair stepping configuration
is activated. followed by the servo shake to settle the blocks
back down into place.

if the water level is not above the set threshold it cycles
through some other configurations. this would not happen
in reality. it is merely a way to show how other configurations
would work and how it would transition between them. not
all the configurations listed in section 3 of the code are
demonstrated here in the final prototype. these are the
configurations that worked the best.

35

CODE
PROTOTYPE 2#include <Servo.h>

[1] - includes

summary: the first line of code is telling the program to use functions included in the Arduino Servo Library. this includes all
the functions like .write or .attached that we will need to control the servo motors.

#define DIM_X 6
#define DIM_Y 6

const unsigned short TOTAL_SERVOS_ATTACHED = DIM_X * DIM_Y;

#define FIRST_SERVO_PIN 18

#define ROT_MIDDLE 1500

#define ROT_DELTA -500

[2] - constants
summary: constant values (const) and
definitions (#define) don’t change. once they
are defined here they are set permanently
and the compiler or arduino cannot change
them. for example, the 6x6 servo grid does not
change.

the first three lines define the servo grid and
gives us the total number of servos attached
(6x6 =36).

we then define that we are plugging in servo 0
to pin 18 on the arduino, servo 1 will go in pin
19, servo 2 in pin 20, etc.

next we define the middle of the servo rotation.
this number is in microseconds. delta refers
to the change in movement. here meaning
the servo arm can move 500 microseconds
in either direction with a full range of 100
microseconds to 2000 microseconds.
Microseconds are more reliable than putting in
degrees.

const float CONFIG_FLAT[TOTAL_SERVOS_ATTACHED] = {
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
};

const float CONFIG_MAX[TOTAL_SERVOS_ATTACHED] = {
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
};

const float CONFIG_MIN[TOTAL_SERVOS_ATTACHED] = {
 -1.0, -1.0, -1.0, -1.0, -1.0, -1.0,
 -1.0, -1.0, -1.0, -1.0, -1.0, -1.0,
 -1.0, -1.0, -1.0, -1.0, -1.0, -1.0,
 -1.0, -1.0, -1.0, -1.0, -1.0, -1.0,
 -1.0, -1.0, -1.0, -1.0, -1.0, -1.0,
 -1.0, -1.0, -1.0, -1.0, -1.0, -1.0
};

const float CONFIG_MOUND[TOTAL_SERVOS_ATTACHED] = {
 -0.8, -0.8, -0.8, -0.8, -0.8, -0.8,
 -0.8, 0.2, 0.4, 0.4, 0.4, -0.8,
 -0.8, 0.1, 0.5, 1.0, 0.3, -0.8,
 -0.8, 0.2, 0.3, 0.3, 0.1, -0.8,
 -0.8, 0.2, 0.3, 0.2, 0.2, -0.8,
 -0.8, -0.8, -0.8, -0.8, -0.8, -0.8
};

const float CONFIG_SLOPE[TOTAL_SERVOS_ATTACHED] = {
 -1.0, -0.5, -0.2, 0.2, 0.6, 1.0,
 -1.0, -0.5, -0.2, 0.2, 0.6, 1.0,
 -1.0, -0.5, -0.2, 0.2, 0.6, 1.0,
 -1.0, -0.5, -0.2, 0.2, 0.6, 1.0,
 -1.0, -0.5, -0.2, 0.2, 0.6, 1.0,
 -1.0, -0.5, -0.2, 0.2, 0.6, 1.0,
};

[3] - configurations
summary:
these are the different height configurations of the
membrane. there are 36 numbers, one for each
servo. 1.0 is the max height, 0.0 is flat, and -1.0 is
the minimum height.

the grid setup of the servos runs left to right like
this:

 00--01--02--03--04-05
 06--07--08--09--10-11
 12--13--14--15--16-17
 18--19--20--21--22-23
 24--25--26--27--28-29
 30--31--32--33--34--35

the configurations are as follows:
1. flat membrane
2. every node at max height
3. every node at min height
4. mound
5. slope from max height on one side to min height
on other.

36

const float CONFIG_DITCH[TOTAL_SERVOS_ATTACHED] = {
 1.0, -0.1, -0.4, -1.0, -0.5, 0.5,
 1.0, -0.1, -0.4, -1.0, -0.5, 0.5,
 1.0, -0.1, -0.4, -1.0, -0.5, 0.5,
 1.0, -0.1, -0.4, -1.0, -0.5, 0.5,
 1.0, -0.1, -0.4, -1.0, -0.5, 0.5,
 1.0, -0.1, -0.4, -1.0, -0.5, 0.5,
};

const float CONFIG_RANDOM[TOTAL_SERVOS_ATTACHED] = {
 0.5, -0.1, 0.4, 0.3, 0.0, 0.0,
 0.6, 1.0, 0.6, 0.2, 0.1, 0.0,
 0.0, 0.1, 0.2, -0.3, -0.1, 0.1,
 0.1, 0.3, -0.5, -0.2, 0.1, 0.3,
 0.3, 0.8, 0.2, 0.6, 1.0, 0.2,
 0.4, 0.2, -0.2, 0.3, 0.1, 0.0
};

const float CONFIG_VALLEY[TOTAL_SERVOS_ATTACHED] = {
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 0.7, 0.1, 0.2, 0.0, 0.0, 1.0,
 0.5, 0.3, -1.0, -1.0, 0.0, 1.0,
 0.9, -0.3, -1.0, -0.3, 0.2, 1.0,
 1.0, 0.1, 0.2, 0.4, 0.5, 1.0,
 1.0, 0.9, 0.8, 1.0, 1.0, 1.0
};

[3] - configurations (continued)
summary:
the configurations are as follows:
1. ditch.
2. random
3. valley at center

37

const float CONFIG_WAVE_1[TOTAL_SERVOS_ATTACHED] = {
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
};
const float CONFIG_WAVE_2[TOTAL_SERVOS_ATTACHED] = {
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
};
const float CONFIG_WAVE_3[TOTAL_SERVOS_ATTACHED] = {
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
};
const float CONFIG_WAVE_4[TOTAL_SERVOS_ATTACHED] = {
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
};
const float CONFIG_WAVE_5[TOTAL_SERVOS_ATTACHED] = {
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
};
const float CONFIG_WAVE_6[TOTAL_SERVOS_ATTACHED] = {
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
};

[3] - configurations (continued)
summary:
this is one multi-part configuration called the wave,
where each row goes up and then down before
going to the next row.

38

int incoming_command;

int selected_servo;

Servo servos[TOTAL_SERVOS_ATTACHED];

[4] - variables
summary:

all the commands that come in from the bluetooth module come in the
form of numbers (0-255). the incoming_command is where commands
are saved from the app/phone.

selected_servo is correlated with the drop down menu in the app
where you can choose an individual servo to modify.

the third line of code means we are creating an array. the length of the
array is the number of servos attached which is 36. an array makes it
so we don’t have to have 36 lines of code to change all of the servos.

void InitServos()
{

 for (int i = 0; i < TOTAL_SERVOS_ATTACHED; i++)
 {
 byte attachment_pin = i + FIRST_SERVO_PIN;
 servos[i].attach(attachment_pin, 1000, 2000);
 servos[i].writeMicroseconds(ROT_MIDDLE);

 delay(50);
 }
}

void InitBluetooth()
{
 Serial3.begin(9600);
}

[5] - initial functions
summary:
initial functions only run once at the beginning setup.

the first function will loop through all 36 servos, attaching
them in consecutive order based on the first pin being 18
(which we defined in section 2 of the code). 1000 and 2000
are then set as the range of movement on each servo.

next the arms are set to middle rotation. there will be a delay of
50 microseconds between each servo attachment.

InitBluetooth is a function that initializes the bluetooth
communication. Serial 3 is the TX and RX pins it is plugged into
on the arduino. 9600 is the rate (9600 bits/second) the data
is exchanged.

39

void SetToConfig(const float * new_config)
{
 for (int i = 0; i < TOTAL_SERVOS_ATTACHED; i++)
 {
 unsigned short new_angle = ROT_MIDDLE + (floor(new_config[i] * ROT_DELTA));
 servos[i].writeMicroseconds(new_angle);
 delay(100);
 }
 }

void SetSpecifiedServo(const char servo_index, const float direction)
{
 if (10 < servos[servo_index].read() && servos[servo_index].read() < 170)
 {
 unsigned short new_angle = servos[servo_index].read() + (10 * direction);
 servos[servo_index].write(new_angle);
 delay(100);
 }
}

[6] - runtime functions
summary:
runtime functions will
continually run throughout the
process.

the first function is for
setting the servos to the
configurations. it will loop
through 36 times because
it is a for loop which runs a
set number of times. it takes
the starting position of the
servo arm and calculates
the rotation defined in the
configuration. floor just
means it rounds the number
down to whole number. then
it sets each actuator to the
new angle. a delay is added
between rotating each servo
to help with power concerns.
the delay is in microseconds.

the second function is for
controlling the individual
servos. 10 is the increment of
degrees it goes up or down.

void setup() {
 Serial.begin(9600);
 InitBluetooth();
 InitServos();
 }

[7] - arduino setup
summary:

serial.begin starts up the arduino. it then runs the initial functions in section 5

40

void loop() {
 if (Serial3.available())
 {
 incoming_command = Serial3.read();
 if (incoming_command >= 36)
 {
 switch(incoming_command)
 {
 case 200:
 SetSpecifiedServo(selected_servo, 1);
 break;
 case 201:
 SetSpecifiedServo(selected_servo, -1);
 break;
 case 100: // mound
 SetToConfig(CONFIG_MOUND);
 break;
 case 101: // flat
 SetToConfig(CONFIG_FLAT);
 break;
 case 102: // wave
 SetToConfig(CONFIG_WAVE_1);
 SetToConfig(CONFIG_WAVE_2);
 SetToConfig(CONFIG_WAVE_3);
 SetToConfig(CONFIG_WAVE_4);
 SetToConfig(CONFIG_WAVE_5);
 SetToConfig(CONFIG_WAVE_6);
 SetToConfig(CONFIG_FLAT);
 break;
 case 103: // ditch
 SetToConfig(CONFIG_DITCH);
 break;
 case 104: // slope
 SetToConfig(CONFIG_SLOPE);
 break;
 case 105: // valley
 SetToConfig(CONFIG_VALLEY);
 break;
 case 106: // random
 SetToConfig(CONFIG_RANDOM);
 break;
 case 107: // all up
 SetToConfig(CONFIG_MAX);
 break;
 }
 }
 else if (0 <= incoming_command && incoming_command < 36)
 {
 selected_servo = incoming_command;
 }
 }
}

[8] - arduino loop
summary:
this loop will keep running the entire time
arduino is running.

it looks at the bluetooth connection and sees if
there is any new data to read. if there is data it
gets saved to the incoming_command. there are
256 slots to save data to.

values 0-35 are for selecting individual servos
for control.

values 200 and 201 are for moving the selected
servo up and down.

values 100-107 are for preset configurations.

41

CONCLUSION

FUTURE RESEARCH
1. prototypes:
• hydroponic model to show that trees and plant material can be moved.
• a hybrid model to combine the structural features of prototype 1 and the fluidity of

prototype 2.
• movement models
2. interviewing:
• talk with architects, artists, and mechanical engineers that have built kinetic

structures to see how to make it more of a reality for a landscape.

ANALYSIS
• The biggest impact to the design of the two prototypes was using the 180 degree servo motors.

They were chosen because they are the cheapest thing I could find by a long shot. Using any
other motor would have blown the budget. Every other part of the prototypes were chosen
specifically to work with the servos. Going into the project I didn’t realize how much of an impact
that would have on construction time and ease of use. Perhaps paying the premium price is
worth it.

• I had originally intended to use the prototypes to be able to recommend materials for actual
construction of a kinetic landscape. However, I now realize a material mockup prototype is
several prototypes away. I probably even started with too advanced of a prototype. I should have
started with small, simple movement models that test for the best method of movement rather
than spending the time and resources to construct a full model.

• Working with Arduino is very complex, more than the average landscape architecture firm would
have the capability to manage. Before continuing with this method of prototyping I recommend
deep discussions with architects, artists, and mechanical engineers that have produced kinetic
structures to see their design procedures.

COST
OVERALL COSTS - $902 (i.e. makerspace membership, classes, arduino kit)
PROTOTYPE 1 - $87 (i.e. wood and fasteners)
PROTOTYPE 2 - $373 (i.e. power supply, app consultant)
TOTAL - $1,362

design by prototype”“
In summary, my entire project concept was pretty ambitious. The learning curve
with the set time frame was extremely intense. Yet, I think the push generated
great results and in the process I picked up a lot of useful skills. I became more
skilled in 3D printing, laser cutting, wood working, app making, coding, and
working with arduino. The project was a success in that it confirms that design-
ing by prototype is indeed a great method for communicating the idea of kinetic
landscapes and generating concepts. Everyone I showed the models to had ideas
about what they could be and what kind of kinetic space they would want. When
just discussing the topic of kinetics or showing pictures of other kinetic structures
this doesn’t happen. A prototype moving in front of you really gets the idea across.

SUMMARY

43

